If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+5t=10
We move all terms to the left:
16t^2+5t-(10)=0
a = 16; b = 5; c = -10;
Δ = b2-4ac
Δ = 52-4·16·(-10)
Δ = 665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{665}}{2*16}=\frac{-5-\sqrt{665}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{665}}{2*16}=\frac{-5+\sqrt{665}}{32} $
| 2+(7/x)=(2/5) | | 4x+3/4=11 | | 2q/(1+q)=0.3 | | |4x+4|+4=3x | | 11+5y/6=6 | | 5/5=20/x | | n-11=4+n | | 3x+23=5-x | | 9/3+7m/3=83/21 | | A=1/2m^2 | | |2x-4|-4=4x | | 0.5x=3+2x | | 6/8+6/8+2/8=21/x | | 4x+x=291 | | -2-9=2y+10-3 | | 9n-8+3=(2n-1) | | (1.03)^4x=2 | | 16t^2+5t-10=0 | | 2=(1.03)^4n | | 2=(1.03*4n | | 8k−10=10+10k | | 2=(1.03)*4n | | 11=11/3x | | 5x+10+2x-20=180 | | 3q+8=15 | | 1/10000x=1 | | 2x+1.3x=576 | | (3x+5)^.5=4 | | √x4=25 | | 5y^2(y^2+4)=28-11y^2 | | (5x-7)^3=7x+1 | | 42=-6(5-r) |